

C191HM Powermeter \& Harmonic Manager

Installation and Operation Manual

LIMITED WARRANTY

The manufacturer offers the customer an 24-month functional warranty on the instrument for faulty workmanship or parts from date of dispatch from the distributor. In all cases, this warranty is valid for 36 months from the date of production. This warranty is on a return to factory basis.

The manufacturer does not accept liability for any damage caused by instrument malfunction. The manufacturer accepts no responsibility for the suitability of the instrument to the application for which it was purchased.

Failure to install, set up or operate the instrument according to the instructions herein will void the warranty.

Your instrument may be opened only by a duly authorized representative of the manufacturer. The unit should only be opened in a fully anti-static environment. Failure to do so may damage the electronic components and will void the warranty.

NOTE

The greatest care has been taken to manufacture and calibrate your instrument. However, these instructions do not cover all possible contingencies that may arise during installation, operation or maintenance, and all details and variations of this equipment are not covered by these instructions.

For additional information regarding installation, operation or maintenance of this instrument, contact the manufacturer or your local representative or distributor.

IMPORTANT

Please read the instructions this manual before performing installation, and take note of the following precautions:

Ensure that all incoming AC power and other power sources are turned OFF before performing any work on the instrument. Failure to do so may result in serious or even fatal injury and/or equipment damage.

Before connecting the instrument to the power source, check the labels on the side of the instrument to ensure that your instrument is equipped with the appropriate power supply voltage, input voltages, currents and communication protocol for your application.

Under no circumstances should the instrument be connected to a power source if it is damaged.

To prevent potential fire or shock hazard, do not expose the instrument to rain or moisture.

The secondary of an external current transformer must never be allowed to be open circuit when the primary is energized. An open circuit can cause high voltages, possibly resulting in equipment damage, fire and even serious or fatal injury. Ensure that the current transformer wiring is made through shorting switches and is secured using an external strain relief to reduce mechanical strain on the screw terminals, if necessary.

Setup procedures must be performed only by qualified personnel familiar with the instrument and its associated electrical equipment.

DO NOT open the instrument under any circumstances.

Modbus is a trademark of Modicon, Inc.

Read this manual thoroughly before connecting the meter to the current carrying circuits. During operation of the meter, hazardous voltages are present on input terminals. Failure to observe precautions can result in serious or even fatal injury or damage to equipment.

Table of Contents

Quick Start iv
Chapter 1 Introduction 1
1.1 About This Manual 1
1.2 About The C191HM 1
Chapter 2 Installation 7
2.1 Mechanical Installation 7
2.2 Electrical Installation 8
Chapter 3 Using The Menus 18
Chapter 4 Setup Menus 20
4.1 Basic Setup Menu 20
4.2 Communications Port Setup Menu 22
4.3 Digital Input Setup Menu 23
4.4 Analog Output Setup Menu. 24
4.5 Pulsing Output Setup Menu 26
4.6 Alarm/Event Setpoints Setup Menu 27
4.7 Relay Operation Control Menu 32
4.8 Display Setup Menu 33
4.9 User Selectable Options Menu 35
4.10 Access Control Menu 37
4.11 Reset/Synchronization Menu 38
Chapter 5 Data Display 39
5.1 Navigating in the Display Mode 39
5.2 Data Display Formats 42
5.3 Self-Test Diagnostics Display 46
Chapter 6 Viewing Status Information 47
6.1 The Status Information Menu 47
6.2 Status Display Formats 47
Appendix: Technical Specifications 49
Index 54

Quick Start

TYPICAL INSTALLATION

Wiring Mode 4LL3 (see Section 2.2.4 for full instructions)

SETUP (see Chapter 4 for full instructions)

Setups can be performed directly on the front panel or via PComTest communication software.

Basic and Communications Default Setups

Code	\|'arameter	Options	Description
ConF	Wiring mode	4Ln3	4-wire Wye using 3 PTs (3 element), line to neutral voltage readings
Pt	PT ratio	1.0	The phase potential transformer ratio
Ct	CT primary current	5	The primary rating of the phase current transformer, A
d.P	Power demand period	15	The length of the demand period for power demand calculations, in minutes. $\mathrm{E}=$ external synchronization (1)
n.dp	Number of power demand periods	1	The number of demand periods to be averaged for sliding window demands 1 = block interval demand calculation
A.dP	Ampere/Volt demand period	900	The length of the demand period for volt/ampere demand calculations, in seconds $0=$ measuring peak current
buF	Averaging buffer size	8	The number of measurements for RMS sliding averaging
$r S t$	Reset enable/disable	diS	Protects all reset functions, both via the front panel or communications.
Freq	Nominal frequency	50/, 60	The nominal power utility frequency, Hz
LoAd	Maximum demand load current	0	The maximum demand load current used in TDD calculations ($0=$ CT primary current)
Prot	Communications protocol	ASCII	ASCII protocol
Addr	Address	0 (ASCII)	Powermeter address
bAud	Baud rate	9600	9600 bps
dAtA	Data format	$8 n$	8 bits, no parity
CPtb	ASCII compatibility mode		Disables ASCII compatibility mode (For more information, see ASCII Communications Protocol Reference Guide)

Chapter 1 Introduction

1.1 About This Manual

This manual is intended for the user of the C191HM Powermeter. This Powermeter is a microprocessor-based instrument used for the measurement, monitoring, and management of electrical parameters.

This chapter gives an overview of this manual and an introduction to the C191HM.

Chapter 2, Installation, provides instructions for mechanical and electrical installation.

Chapter 3, Using the Menus, presents the structure of menus for setup and status viewing.

Chapter 4, Setup Menus, provides instructions for performing parameter setup via the front panel.
Chapter 5, Data Display, guides you through the display pages.
Chapter 6, Viewing Status Information, tells you how to access additional status information on the instrument. This information may be useful during installation.
Chapter 7 contains Technical Specifications for the C191HM.

1.2 About The C191HM

The C191HM is a compact panel mounted three-phase AC Powermeter and Harmonic Manager, specially designed to meet the requirements of users ranging from electrical panel builders to substation operators. The C191HM provides basic voltage, current, frequency, power, power factor and energy measurements, plus total harmonic distortion (THD, TDD and K-Factor) and individual harmonic measurements.

The $\mathbf{C 1 9 1 H M}$ is suitable for mounting on $136 \times 136 \mathrm{~mm}$ square cut-outs.

Features

Harmonic Measurements

- Individual voltage and current harmonics with harmonic angles up to order 40.
- Harmonic power direction (through PAS software)
- Synthesized voltage and current waveforms (through PAS software)

Display

The front panel features bright LED displays (three windows, up to 45 pages) with adjustable display update time. Display auto scroll is available on the main
screen with a programmable scroll interval of 2 to 15 seconds. Automatic return to the main screen is available after 30 seconds of uninterrupted use. The front panel also includes:

- bar graph showing percentage load with respect to user-definable nominal (100\%) load current
- alarm LED providing a local indication when a predefined alarm condition appears. The alarm LED is shut off manually (by pressing on both up and down keys more than 5 sec)
- RXD/TXD LEDs showing communications receive/transmit status

Setup is menu driven, with optional password protection. 16 programmable setups are provided for alarm and control functions (for programmable parameters, see 'Measured Parameters' below).

Communications are available using an RS-232 or RS-485 standard (factory set), with ASCII/Modbus (and optional DNP3.0) protocols. 120 user assignable registers are available in ASCII/Modbus protocols.

Eight relays are provided for energy pulsing (KYZ) or alarm and remote control. Contacts of six relays may switch loads up to 250V, 5A AC and are recommended for alarm and remote control; contacts of two relays may switch loads up to $250 \mathrm{~V}, 3 \mathrm{~A} A \mathrm{C}$ and may be used for energy pulsing.

One optically isolated analog output is provided for remote monitoring or control. Current loop options are 0-20 and 4-20 mA. The analog output must be used with an external power supply.

Four counters are provided for counting user-defined events or their duration. These can be used for counting total operation time of generators or overload time of transformers or power lines. The counters are operated and released by user-defined triggers.

One digital input can be used as a status input for monitoring external contacts or as an external synchronization input for power demand interval synchronization. When no external synchronization pulse is provided, the power demand interval can be synchronized through communications.

Three user-selectable options are provided:

Power calculation mode

Energy rollover value

This option specifies the point at which the energy value rolls over to zero.

Phase energy calculations mode

This option is used to enable or disable phase energy calculations.

Measured Parameters
Note: Real-time values are measured over 1 cycle of fundamental frequency; Average values are of 8,16 or 32 real-time values

Parameter	Display	Com	Output		
			Analog	Pulse	Alarm
Average Amps, Volts, Frequency			$\begin{aligned} & \$=\text { setup via PC } \\ & \#=\text { setup via panel } \end{aligned}$		
Average RMS voltage per phase L-N	\checkmark	\checkmark	\#\$		\#\$
Average RMS voltage per phase L-L (1)	$\sqrt{ }$	\checkmark	(1)		(1)
Average RMS current per phase	\checkmark	\checkmark	\#\$		\#\$
Average frequency	\checkmark	\checkmark	\#\$		\#\$
Average neutral current	\checkmark	\checkmark	\#\$		\#\$
Voltage \& current unbalance	\checkmark	\checkmark			
Amps \& Volt Demand Parameters					
Ampere demand per phase		\checkmark			\#\$
Volt demand per phase		\checkmark			\#\$
Ampere maximum demand per phase	\checkmark	\checkmark			
Voltage maximum demand per phase	\checkmark	$\sqrt{ }$			
Average Power Values					
Average active power per phase	\checkmark	\checkmark			
Average reactive power per phase	\checkmark	\checkmark			
Average apparent power per phase	\checkmark	\checkmark			
Average total active power	\checkmark	\checkmark	\#\$		\#\$
Average total reactive power	\checkmark	\checkmark	\#\$		\#\$
Average total apparent power	\checkmark	\checkmark	\#\$		\#\$
Average power factor per phase	\checkmark	\checkmark			
Average total power factor	\checkmark	\checkmark	\#\$		\#\$
Power Demand Parameters					
Active power accumulated demand		\checkmark	\#\$		\#\$
Apparent power accumulated demand		\checkmark	\#\$		\#\$
Active power demand		\checkmark			\#\$
Active power sliding demand		\checkmark			\#\$
Apparent power demand		\checkmark			\#\$
Apparent power sliding demand		\checkmark			\#\$
Active power predicted demand		\checkmark			\#\$
Apparent power predicted demand		\checkmark			\#\$
Active power maximum demand	\checkmark	\checkmark			
Apparent power maximum demand	\checkmark	\checkmark			
Energy Per Phase					
Active energy import per phase	\checkmark	\checkmark			
Reactive energy import per phase	\checkmark	\checkmark			
Apparent energy per phase	\checkmark	\checkmark			
Total Energy					
Total active energy import	\checkmark	\checkmark		\#\$	

Parameter	Dis-		Output		
	play	Com	Analog	Pulse	Alarm
Individual Harmonic Distortion					
Voltage harmonics 1-40 per phase		\checkmark			
Current harmonics 1-40 per phase		\checkmark			
Odd voltage harmonics 3-39 per phase	\checkmark				
Odd current harmonics 3-39 per phase	\checkmark				
High odd voltage harmonics 3-39 triggers					$\# \$$
High odd current harmonics 3-39 triggers					$\# \$$
Voltage harmonics angles 1-40 per phase		\checkmark			
Current harmonics angles 1-40 per phase		\checkmark			
Phase Rotation	\checkmark				$\# \$$
Counters	\checkmark	\checkmark			
Status Input	\checkmark	\checkmark			$\# \$$
Relay Status	\checkmark	\checkmark			
Remote Relay Control		\checkmark			
Alarm Trigger Status		\checkmark			$\# \$$
Self-Diagnostic Tests	\checkmark	\checkmark			

(1) For 4Ln3 and 3Ln3 wiring configurations line to line and line to neutral voltages are displayed and transmitted via communication simultaneously; analog output and set points use line to neutral voltages. For other configurations only line to line voltages are used.

Instrument Dimensions

Figure 1-1 C191HM Dimensions

Chapter 2 Installation

2.1 Mechanical Installation

Prepare the panel cut-out, $136 \times 136 \mathrm{~mm}$, prior to mounting.
STEP 1: Place the instrument through the cut-out.
STEP 2: Assemble the latches onto the outer wall of the enclosure.
STEP 3: Tighten the screws.

Figure 2-1 Mounting the C191HM

2.2 Electrical Installation

Before installation ensure that all incoming power sources are shut OFF. Failure to observe this practice can result in serious or even fatal injury and damage to equipment.

2.2.1 Power Supply Connection

The power supply can be dedicated-fused, or from a monitored voltage if it is within the instrument's power supply range. Use an external circuit breaker or switch.

AC power supply: line to terminal 12; neutral to terminal 10.
DC power supply: positive to terminal 12; negative to terminal 10.

2.2.2 Current Inputs

Connect the instrument to the current transformer as shown in Figures 2-2 through 2-8.

2.2.3 Ground

Connect the chassis ground C191HM terminal to the switchgear earth ground using dedicated wire of greater than $2.5 \mathrm{~mm}^{2} / 13$ AWG.

2.2.4 Voltage Inputs

Input of 690V (Standard): Use any of the seven wiring configurations shown in Figures 2-2 through 2-8.

Input of 120V (Option U): 120V input usually implies use of a potential transformer (PT). The PT requires use of any of the four wiring configurations shown in Figures 2-4 through 2-7.

Wiring Configuration (See parameter setup instructions in Section 4.1)	Wiring	
	Setup Mode	Connection
3 -wire direct connection using 2 CTs (2-element)	3dir2	Figure 2-2
4 -wire WYE direct connection using 3 CTs (3-element)	4Ln3 or 4LL3	Figure 2-3
4-wire WYE connection using 3 PTs, 3 CTs (3-element)	4Ln3 or 4LL3	Figure 2-4
3 -wire open delta connection using 2 PTs, 2 CTs (2-element)	30P2	Figure 2-5
3 -wire open delta connection using 2 PTs, 3 CTs ($2^{\frac{1}{2}}$-element)	30P3	Figure 2-6
4 -wire WYE connection using 2 PTs, 3 CTs ($2^{\frac{1}{2}}$-element)	3Ln3 or3LL3	Figure 2-7
4 -wire delta direct connection using 3 CTs (3-element)	4Ln3 or 4LL3	Figure 2-8

Figure 2-2
Three Wire Direct Connection Using 2 CTs (2-element)
Wiring Mode $=3$ dir2
c99-09042

Figure 2-3
Four Wire WYE Direct Connection Using 3 CTs (3-element)
Wiring Mode $=4$ LL3 or 4Ln3

Figure 2-5
Three Wire Open Delta Connection Using 2 PTs, 2 CTs (2-element)

Wiring Mode $=30$ P2
c99-09038

Figure 2-6
Three Wire Open Delta Connection Using 2 PTs, 3 CTs ($2^{1 / 2}$-element)

Wiring Mode $=30 \mathrm{P} 3$

Figure 2-8 Four Wire Delta Direct Connection Using 3 CTs (3 element) Wiring Mode $=4 \mathrm{LL} 3$ or 4Ln3

2.2.5 Relay

Eight relays are provided for energy pulsing, alarms or remote control.

c99-0904 5
Figure 2-9 Relay Connection

2.2.6 Status Input

One status input is provided for status monitoring or external synchronization input for power demand period.

Figure 2-10 Status Input Connection

2.2.7 Analog Output

The C191HM provides one optically isolated analog output with current output options of $0-20 \mathrm{~mA}$ and $4-20 \mathrm{~mA}$ (current loop load of up to 500 Ohm). The analog output must be used with a 24 V DC external power supply.

Figure 2-11 Analog Output Connection

2.2.8 Communications

The C191HM is provided with an RS-232 or RS-485 communication port. Connections can be made as follows:

RS-232: distance of up to 15 meters, one C191HM to one computer/PLC, using a flat or twisted pair cable of $0.33 \mathrm{~mm} 2 / 22$ AWG
RS-485: distance of up to 1200 meters, up to 32 instruments on one multi-drop line

Figure 2-12 Connection for 25-pin Modem Connector

POWERMETER	RS-232		9-PIN DB9 MALE CONNECTOR		
	15	SG	GND	5	MODEM
	13	TxD	TxD	3	
	14	RxD	RxD	2	

Figure 2-13 Connection for 9-pin Modem Connector

Figure 2-14 RS-232 Simple 3-Wire Computer Connection, 25-pin

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{9}{*}{POWERMETER} \& \multicolumn{2}{|l|}{RS-232} \& \multicolumn{3}{|l|}{9-PIN DB9 FEMALE CONNECTOR}

\hline \& \& SG \& GND \& \& \multirow[b]{8}{*}{IBM PC/COMPATIBLE

c99-11015}

\hline \& 13 \& \multirow[t]{3}{*}{$$
\begin{array}{|l|l|}
\hline \text { TxD } \\
\hline \text { RxD } \\
\hline
\end{array}
$$} \& RxD \& 2 \&

\hline \& \multirow[t]{6}{*}{14} \& \& TxD \& 3 \&

\hline \& \& \& DSR \& \&

\hline \& \& \& DTR \& \&

\hline \& \& \& RTS \& 7 \&

\hline \& \& \& CTS \& \&

\hline \& \& \& \& \&

\hline
\end{tabular}

Figure 2-15 RS-232 Simple 3-Wire Computer Connection, 9-pin

Figure 2-16 RS-485 Multi-drop Computer Connection
NOTE: Where an RS-232/RS-485 converter is used on a computer connection, R1 is not applicable since it is built in to the converter.

Activity on the communications port lines is indicated via the TXD and RXD LEDs, on the front panel and via the Status Information menu (see Chapter 6).
A full description of the communication protocols may be found in the C191HM ASCII, Modbus and DNP3.0 Communications Manuals provided with your
instrument.

Chapter 3 Using The Menus

Press and release SELECT to enter the setup mode. The primary menus will appear:

StA	-	Status Information Menu (see Chapter 6)
OPS	-	Setup Options Menu
CHG	Setup Change Menu (see Chapter 4)	

Press SELECT again to activate the window of the desired primary menu.
Press ENTER.
Select CHG to initialize or modify the instrument setup, or to clear the accumulated values stored in the instrument. Entry to this menu can be protected by a password.

SELECT \rightarrow CHG \rightarrow ENTER
Select StA to view extended status information which may be useful during installation and in certain applications. SELECT\rightarrow StA \rightarrow ENTER
Select OPS for viewing (not editing) the instrument setup options.
SELECT \rightarrow OPS \rightarrow ENTER

After selecting either OPS or CHG, the list of setup menus is displayed in the upper window. Figure 3-1 presents a complete menu list. Depending on the model of your instrument, some menus may not appear.

Password

The Setup Change Menu can be secured by a user-defined password comprised of 4 digits. The instrument is shipped with password protection disabled. To enable password protection, go to the Access Control Menu (see Section 4.10).
The Password Menu appears if password protection is enabled.

To enter a password:

\checkmark Set the first digit using the up and down arrow keys.
\checkmark Press SELECT to advance to the next digit.

\checkmark Set the other password digits in the same manner.
\checkmark Press ENTER to continue setup. If your password is incorrect, you will return to the Primary Selection Menu.

Figure 3-1 Menu Structure

Chapter 4 Setup Menus

NOTE: Instrument setup can be performed directly on the front panel using the setup menus or via communications using PComTest communication software. PComTest is supplied with your instrument and provides full setup capabilities for your instrument. For information on using PComTest, refer to the user documentation supplied with your instrument.

Setup	Display	$\underline{\text { PComTest }}$	
Basic	+	+	
Communication port	++	+	
User Selectable options	++	+	
Analog output	+	+	
Digital inputs	+	+	++ Recommended method
Alarm/Event set points	+	+	
Pulsing output	+	+	
Pulse counter	+	+	
Assignable registers	-	++	
Display	++	-	

4.1 Basic Setup Menu

This menu contains the basic configuration options which define the general operating characteristics of your instrument, such as wiring mode, input scales, the size of the RMS averaging buffer, etc. Table 4-1 lists the basic setup options, their code names and applicable ranges.
Activate the middle window to scroll through the list of available options, and then activate the lower window to set the option value.

To select and view a setup option:

\checkmark Press SELECT to activate the middle window
\checkmark Use the up/down arrow keys to scroll to the desired option. The current value for this option appears in the lower window.

To change the value of the selected option:

\checkmark Press SELECT to make the lower window active.
\checkmark Press the up/down arrow keys to scroll to the desired value.
\checkmark Press ENTER to store the selected value, or press ESC to quit the setup menu.

Table 4-1 Basic Setup Options (* default setting)

Code	Parameter	Options	Description
ConF	Wiring mode	3OP2 4Ln3* 3dir2 4LL3 30P3 3Ln3 3LL3	3-wire open delta using 2 CTs (2 element) 4-wire Wye using 3 PTs (3 element), line to neutral voltage readings 3-wire direct connection using 2 CTs (2 element) 4-wire Wye using 3 PTs (3 element), line to line voltage readings 3 -wire open delta using 3 CTs ($21 / 2$ element) 4-wire Wye using 2 PTs ($2 ½$ element), line to neutral voltage readings 4-wire Wye using 2 PTs ($21 / 2$ element), line to line voltage readings
Pt	PT ratio	10*-6,500.0	The phase potential transformer ratio
$C t$	CT primary current	$\begin{aligned} & 1-6,500 \mathrm{~A} \\ & (5 *) \end{aligned}$	The primary rating of the phase current transformer
d.P	Power demand period	$\begin{aligned} & 1,2,5,10, \\ & 15^{*}, 20,30, \\ & 60, \mathrm{E} \end{aligned}$	The length of the demand period for power demand calculations, in minutes. $\mathrm{E}=$ external synchronization (1)
n.dp	Number of power demand periods	$\begin{aligned} & 1-15 \\ & \left(1^{*}\right) \end{aligned}$	The number of demand periods to be averaged for sliding window demands 1 = block interval demand calculation
A.dP	Ampere/Volt demand period	$\begin{aligned} & 0-1800 \mathrm{~s} \\ & \left(900^{*}\right) \end{aligned}$	The length of the demand period for volt/ampere demand calculations in seconds $0=$ measuring peak current
buF	Averaging buffer size	8*,16,32	The number of measurements for RMS sliding averaging
$r S t$	Reset enable/disable	diS*, En	Protects all reset functions, both via the front panel or communications.
Freq	Nominal frequency	50, 60 Hz (2)	The nominal power utility frequency
LoAd	Maximum demand load current	$\begin{aligned} & 0-6,500 \mathrm{~A} \\ & (0 *) \end{aligned}$	The maximum demand load current used in TDD calculations ($0=$ CT primary current)

(1) When the power demand period is specified in minutes, synchronization of the demand interval can be made through communications (see the C191HM ASCII/Modbus Reference Guides) or via the front panel (see Section 4.11). If the power demand period is set to External Synchronization, an external synchronization pulse denoting the start of the next demand interval can be provided through a digital input or can be simulated by using the synchronization command sent via communications.
(2) 60 Hz default for North America; elsewhere, default is 50 Hz .

NOTES

1) The maximum value for CT PRIMARY CURRENT \times PT RATIO is $10,000,000$. If this product is greater, power related values will be zeroed.
2) Always specify WIRING MODE, PT RATIO and CT PRIMARY CURRENT prior to setting up alarm setpoints, otherwise the alarm/event setpoints which use these parameters will automatically be disabled.

4.2 Communications Port Setup Menu

This menu allows you to access the communications port options that the C191HM uses to communicate with a master computer. Table 4-2 lists the communications options, their code names and applicable choices.

Activate the middle window to scroll through the list of available options, and then activate the lower window to set the option value.

Port
Prot
ASCII

To select and view a setup option:
\checkmark Press SELECT to activate the middle window.
\checkmark Use the up/down arrow keys to scroll to the desired option. The option setting will appear in the lower window.

To change the selected option:

\checkmark Press SELECT to activate the lower window.
\checkmark Press the up/down arrow keys to scroll to the desired value.
\checkmark Press ENTER to store the selected value or press ESC to quit the setup menu.

Table 4-2 Communications Options (* default setting)

Code	Parameter	Options	Descr ption
Prot	Communications protocol	ASCII* rtu	ASCII protocol Modbus RTU protocol
Addr	Address	$\begin{aligned} & \text { 0*-99 ASCII } \\ & \text { 1*-247 Modbus } \end{aligned}$	Powermeter address
bAud	Baud rate	$\begin{aligned} & 110 \\ & 300 \\ & 600 \\ & 1200 \\ & 2400 \\ & 4800 \\ & 9600 * \\ & 19.20 \end{aligned}$	110 baud 300 baud 600 baud 1200 baud 2400 baud 4800 baud 9600 baud 19,200 baud
$d A t A$	Data format	$\begin{aligned} & 7 E \\ & 8 n * \\ & 8 E \\ & \hline \end{aligned}$	7 bits, even parity 8 bits, no parity 8 bits, even parity
CPtb	ASCII compatibility mode	diS*, En	Disables/enables ASCII compatibility mode. For more information, see ASCII Communications Protocol Reference Guide

4．3 Digital Input Setup Menu

This menu is used to set up a digital input provided by the C191HM．
The digital input can be configured as：
－a status input to monitor external contact status，or
－an external synchronization pulse input to receive an external synchronization pulse indicating the beginning of a new demand interval for power demand measurements．

The setup menu is used for allocating an external synchronization pulse input．If you do not allocate the digital input as an external synchronization input，it is automatically configured as a status input

To change the digital input allocation：

External
synchronization input
\checkmark Press SELECT to activate the middle window．
\checkmark Use the up／down arrow keys to set the input allocation status．

E．Snc 䍙
1 园
园

\checkmark Press ENTER to store your new inputs allocation．
\checkmark Press ESC to leave the allocation unchanged or to quit the menu．
＂ 1 ＂indicates that the input is allocated as the external synchronization pulse input；＂ 0 ＂indicates that the input is allocated as the status input．

NOTES

1．A digital input configured as the status input can be monitored via the Status Information Menu（see Chapter 6）and communications．
2．If the digital input has been allocated as the external synchronization pulse input， synchronization of the demand interval through communications is not available．

4.4 Analog Output Setup Menu

[This section is relevant to instruments ordered with this option.]

This menu allows you to set up an output value and its zero and full scales for the internal analog output. Table 4-3 explains the analog output setup options, and Table 4-4 lists all measurement parameters that can be directed to analog output.

Output paramete	Zero-scale outp	Full-scale output
Aout	Aout 진	Aout
Outp	Lo	Hi
it U1	0 园	828

To view the setup options for the analog output:
\checkmark Press SELECT to activate the middle window.
\checkmark Use the up/down arrow keys to scroll to the desired option. The value associated with this option is displayed in the lower window.
To change the setup options for the selected channel:
\checkmark Press SELECT to activate the lower window.
\checkmark Use the up/down arrow keys to scroll to the desired value.
\checkmark Press ENTER to store the selected value, or press ESC to leave the value unchanged.
\checkmark Press ENTER again to store the setup for the channel.
To quit the setup without changes:
\checkmark From the middle or lower window, press ESC.

To quit the menu:

\checkmark From the upper window, press ESC or ENTER.

NOTES

1. Except for the signed power factor, the output scale is linear within the value range. The scale range will be inverted if the full scale specified is less than the zero scale.
2. The output scale for the signed power factor is symmetrical with regard to ± 1.000 and is linear from -0 to -1.000 , and from 1.000 to +0 (note that $-1.000 \equiv+1.000$). Negative power factor is output as $[-1.000$ minus measured value], and non-negative power factor is output as $[+1.000$ minus measured value]. To define the entire range for power factor from -0 to +0 , the scales would be specified as $-0.000 / 0.000$.
3. Each time you select the output parameter for the analog channel, its zero and full scales are set by default to the lower and upper parameter limits, respectively.

Table 4-3 Analog Output Setup Options

Code	Option	Description
OutP	Output parameter	The output parameter for the analog output channel
Lo	Zero scale $(0 / 4 \mathrm{~mA})$	The reading of the parameter corresponding to a zero- scale current output
Hi	Full scale $(1 / 20 \mathrm{~mA})$	The reading of the parameter corresponding to a full-scale current output

Table 4-4 Analog Output Parameters

Code	Paramett r	Unit	Scale
nonE	Output disabled		0
Real-time Measurements			
r. $\cup 1$	Voltage L1/L12	V/kV	0 to Vmax
r. $\cup 2$	Voltage L2/L23	V/kV	0 to Vmax
r. $\cup 3$	Voltage L3/L31	V/kV	0 to Vmax
r. C1	Current L1	A	0 to Imax
r. C2	Current L2	A	0 to Imax
r. C3	Current L3	A	0 to Imax
r. P	Total kW	kW/MW	-Pmax to Pmax
r. q	Total kvar	kvar/Mvar	-Pmax to Pmax
r. S	Total kVA	kVA/MVA	0 to Pmax
r. PF	Total PF		-0.000 to 0.000
r. PF.LG	Total PF lag		0 to 1.000
r. PF.Ld	Total PF lead		0 to 1.000
r. Fr	Frequency (1)	Hz	0 to 100.00
Average Measurements			
A. $\cup 1$	Voltage L1/L12	V/kV	0 to Vmax
A. $\cup 2$	Voltage L2/L23	V/kV	0 to Vmax
A. $\cup 3$	Voltage L3/L31	V/kV	0 to Vmax
A. C1	Current L1	A	0 to Imax
A. C 2	Current L2	A	0 to Imax
A. C 3	Current L3	A	0 to Imax
A. P	Total kW	kW/MW	-Pmax to Pmax
A. q	Total kvar	kvar/Mvar	-Pmax to Pmax
A. S	Total kVA	kVA/MVA	0 to Pmax
A. PF	Total PF		-0.000 to 0.000
A. PF.LG	Total PF lag		0 to 1.000
A. PF.Ld	Total PF lead		0 to 1.000
A. neU.C	Neutral current	A	0 to Imax
A. Fr	Frequency (1)	Hz	0 to 100.00
Present Demands			
Accd.P	Accumulated kW demand	kW/MW	0 to Pmax
Accd.S	Accumulated kVA demand	kVA/MVA	0 to Pmax

$\operatorname{Imax}(20 \%$ over-range $)=1.2 \times$ CT primary current $[\mathrm{A}]$
Direct wiring (PT Ratio $=1$):
Vmax $(690 \mathrm{~V}$ input option) $=828.0 \mathrm{~V}$
Vmax (120 V input option $)=144.0 \mathrm{~V}$
Pmax $=(\operatorname{Imax} \times V \max \times 3)[\mathrm{kW} \times 0.001] @$ wiring modes 4Ln3, 3Ln3
Pmax $=(I \max \times V \max \times 2)[k W \times 0.001]$ @ wiring modes 4 43 , 3OP2, 3dir2, 3OP3, 3

NOTE: Pmax is rounded to nearest whole kW units.
If Pmax is more than 9999.000 kW , it is truncated to 9999.000 kW
Wiring via PTs (PT Ratio > 1):
Vmax $(690$ V input option) $=144 \times$ PT Ratio [V]
Vmax $(120 \mathrm{~V}$ input option) $=144 \times$ PT Ratio [V]
Pmax $=(\operatorname{Imax} \times V \max \times 3) / 1000$ [MW x 0.001] @ wiring modes 4Ln3, 3Ln3
Pmax $=(\operatorname{Imax} \times V \max \times 2) / 1000$ [MW x 0.001] @ wiring modes 4Ц3, 3OP2, 3dir2, 3OP3, 3 $\llcorner 3$
NOTE: Pmax is rounded to nearest whole kW units.
(1) The actual frequency range is $45.00-65.00 \mathrm{~Hz}$

4.5 Pulsing Output Setup Menu

This menu allows you to program any of the eight relays provided by your C191HM instrument to output energy pulses. Relays \#7 and \#8 are especially recommended for use as pulsing relays because of their high endurance. Available pulsing parameters are listed in Table 4-5.

rEL. 1
Ac.Ei
1

To select a pulse relay:

\checkmark Use the up/down arrow keys to scroll to the desired relay. The pulsing parameter assigned to the relay is displayed in the middle window, and the amount of unit-hours per pulse is displayed in the lower window.

To change the pulse relay setup:

\checkmark Press SELECT to activate the middle window.
\checkmark Use the up/down arrow keys to scroll to the desired output parameter. Selecting nonE disables pulsing through this relay.
\checkmark Press SELECT to activate the lower window.
\checkmark Use the up/down arrow keys to set the amount of unit-hours per pulse. The available range is 1-9999.
\checkmark Press ENTER to store the new setup, or press ESC to quit the setup without changes.
To quit the pulsing setup menu:
\checkmark From the upper window, press ESC or ENTER.
Table 4-5 Pulsing Output Parameters

Code	Paramete	Units
nonE	Output disabled	
Ac.Ei	Active energy import	kWh import (positive)
Ac.EE	Active energy export	kWh export (negative)
$r E . E i$	Reactive energy import	kvarh import (inductive)
$r E . E E$	Reactive energy export	kvarh export (capacitive)
$r E . E t$	Reactive energy total	kvarh total (absolute)
$A P . E t$	Apparent energy total	kVAh total

NOTES

1．If your instrument is not equipped with the optional relay，then this setup parameter will not appear on the display．
2．You will not be able to store your setup in the instrument if you assigned a parameter to relay output with a zero number of unit－hours per pulse．
3．If a relay you allocated for pulsing has been manually operated or released，it reverts automatically to normal operation．
4．If a relay you allocated for pulsing has been engaged by an alarm／event setpoint，the setpoint is automatically disabled．

4．6 Alarm／Event Setpoints Setup Menu

Your instrument provides 16 alarm／event setpoints that can monitor a wide variety of events；in turn，these events can be programmed to trigger specific actions．This menu is used to specify the events to be monitored by the setpoints，and actions to be triggered by those events．

To program a setpoint，you might need to define up to six setup parameters which include：the setpoint trigger parameter，operate and release limits，optional operate and release delays，and the setpoint action．Table 4－6 explains the setpoint setup parameters．For the entire list of available triggers and setpoint actions，refer to Tables 4－7 and 4－8．

Example：

SP 1 园	Trigger parameter
triG 圂	
RHi．C1圌	

Setpoint 1 is set to monitor the real－time high current on phase 1 （the trigger parameter）．

Operate limit \}
\} The operate (On) and release (OFF) limits which determine setpoint operation are defined as 1200A and 1100A respectively．

Release limit \}

Operate delay $\}$
\} The delays before operation (On d) and release
\} (OFFd) are set at 5 seconds and 10 seconds respectively．
Release delay \}

SP 1
Act
AEL. 1

Setpoint action The action to be triggered is operation of relay \#1.

To select a setpoint:

\checkmark Scroll to the desired setpoint using the up/down arrow keys.
To view the setup options for the setpoint:
\checkmark Press SELECT to activate the middle window.
\checkmark Use the up/down arrow keys to scroll to the desired setup option. The value associated with this option is displayed in the lower window.
To change the selected setup option:
\checkmark Press SELECT to activate the lower window.
\checkmark Use the up/down arrow keys to scroll to the desired value.
\checkmark Press ENTER to store the new value.
\checkmark Press ESC to leave the value unchanged.
To store your new setup for the setpoint:
\checkmark From the middle window, press ENTER.
To quit the setpoint setup without changes:
\checkmark From the middle window, press ESC.
To quit the setpoints setup menu:
\checkmark From the upper window, press ESC or ENTER.
NOTES

1. If your instrument is not equipped with the optional relay, then these setup parameters will not appear on the display.
2. When you enter the setpoints setup menu at the protected level, monitoring setpoints is temporarily suspended until you return to the main setup menu.
3. Each time you select a new trigger parameter, the operate and release limits are set by default to zero.
4. You will not be able to store your setpoint setup to the instrument if a setpoint action is directed to a relay allocated for pulsing.
5. The setpoint action directed to a relay output can be overridden using commands sent via communications. A relay can be manually operated or released. When the relay reverts to normal operation, it is automatically returned under setpoint control.

Table 4-6 Setpoint Setup Options (middle window)

Code	Option	Description
triG	Trigger parameter	The measurement parameter or signal to be monitored by the setpoint.
On	Operate limit	The threshold at which the setpoint becomes operative. OFF Release limit threshold at which the setpoint is released (becomes
On d	Operate delay	inoperative). The time delay (0.1 second resolution) before operation when the operate condition is fulfilled. The time delay (0.1 second resolution) before release when the release condition is fulfilled. The action performed when the setpoint is operative.
OFF d	Release delay	
Act	Setpoint action	

Table 4-7 Setpoint Triggers (lower window, when middle window is triG)

Code	Parameter	Unit	Range
nonE Setpoint disabled			
Status Input			
St.On Status input ON			
St.OFF Status input OFF			
Phase Reversal			
POS.ro.	Positive phase rotation reversal		
NEG.ro. Negative phase rotation reversal (1)			
Real-time Values on any Phase			
r. Hi. U	High voltage (3)	V	0 to Vmax
r. Lo. U	Low voltage (3)	V	0 to Vmax
r. Hi. C	High current	A	0 to Imax
r. Lo. C	Low current	A	0 to Imax
r. thd.U	High voltage THD	\%	0 to 999.9
r. thd.C	High current THD	\%	0 to 999.9
r. HFc.C	High K-factor	\%	1.0 to 999.9
r. tdd.C	High current TDD	\%	0 to 100.0
Real-time Auxiliary Measurements			
r. Hi.Fr	High frequency (2)	Hz	0 to 100.00
r. Lo.Fr	Low frequency (2)	Hz	0 to 100.00
Average Values per Phase			
A. Hi.C1	High current L1	A	0 to Imax
A. Hi.C2	High current L2	A	0 to Imax
A. Hi.C3	High current L3	A	0 to Imax
A. Lo.C1	Low current L1	A	0 to Imax
A. Lo.C2	Low current L2	A	0 to Imax
A. Lo.C3	Low current L3	A	0 to Imax
Average Values on any Phase			
A. Hi. U	High voltage (3)	V	0 to Vmax
A. Lo. U	Low voltage (3)	V	0 to Vmax
A. Hi. C	High current	A	0 to Imax
A. Lo. C	Low current	A	0 to Imax
Average Total Values			
A. Hi.P.i	High total kW import (positive)	kW	0 to Pmax
A. Hi.P.E	High total kW export (negative)	kW	0 to Pmax
A. Hi.q.i	High total kvar import (positive)	kvar	0 to Pmax
A. Hi.q.E	High total kvar export (negative)	kvar	0 to Pmax
A. Hi. S	High total kVA	kVA	0 to Pmax
A. PF.LG	Low total PF Lag		0 to 1.000

Code	Parameter	Unit	Range
A. PF.Ld	Low total PF Lead		0 to 1.000
Average Auxiliary Measurements			
Ar neU.C	High neutral current	A	0 to Imax
Ar Hi.Fr	High frequency (2)	Hz	0 to 100.00
Ar Lo.Fr	Low frequency (2)	Hz	0 to 100.00
Present Demands			
Hi d.U1	High volt demand L1 (3)	V	0 to Vmax
Hi d.U2	High volt demand L2 (3)	V	0 to Vmax
Hi d.U3	High volt demand L3 (3)	V	0 to Vmax
Hi d.C1	High ampere demand L1	A	0 to Imax
Hi d.C2	High ampere demand L2	A	0 to Imax
Hi d.C3	High ampere demand L3	A	0 to Imax
Hi d.P	High block interval kW demand	kW	0 to Pmax
Hi d.S	High block interval kVA demand	kVA	0 to Pmax
Hi Sd.P	High sliding window kW demand	kW	0 to Pmax
Hi Sd.S	High sliding window kVA demand	kVA	0 to Pmax
Hi Ad.P	High accumulated kW demand	kW	0 to Pmax
Hi Ad.S	High accumulated kVA demand	kVA	0 to Pmax
Hi Pd.P	High predicted sliding window kW demand	kW	0 to Pmax
Hi Pd.S	High predicted sliding window kVA demand	kVA	0 to Pmax
High Voltage Harmonic Distortions on any Phase			
Hd03.U	High voltage harmonic H03	\%	0 to 100.00
Hd05.U	High voltage harmonic H05	\%	0 to 100.00
Hd39.U	High voltage harmonic H39	\%	0 to 100.00
High Current Harmonic Distortions on any Phase			
Hd03.C	High current harmonic H03	\%	0 to 100.00
Hd05.C	High current harmonic H05	\%	0 to 100.00
Hd39.C	High current harmonic H39	\%	0 to 100.00

For parameter limits, see notes to Table 4-4.
(1) The setpoint is operated when the actual phase sequence does not match the indicated normal phase rotation.
(2) The actual frequency range is $45.00-65.00 \mathrm{~Hz}$.
(3) When the 4LN3 or 3LN3 wiring mode is selected, the voltages will be line-to-neutral; for any other wiring mode, they will be line-to-line voltages.

Table 4-8 Setpoint Actions (lower window, when middle window is Act)

Code	Action
NonE	No action (1)
ALAr	Assert local alarm (2)
rEL. 1	Operate relay \#1 3)
rEL. 2	Operate relay \#2
rEL.3	Operate relay \#3
rEL.4	Operate relay \#4
rEL. 5	Operate relay \#5
rEL. 6	Operate relay \#6
rEL. 7	Operate relay \#7
rEL.8	Operate relay \#8
In.Cn. 1	Increment counter \#1
In.Cn.2	Increment counter \#2
In.Cn.3	Increment counter \#3
In.Cn.3	Increment counter \#3
In.Cn.4	Increment counter \#4
ti.Cn.1	Count operating time using counter \#1 (4)
ti.Cn.1	Count operating time using counter \#2
ti.Cn.1	Count operating time using counter \#3
ti.Cn.1	Count operating time using counter \#4

(1) When a setpoint is operated, its status is always stored to the alarm status register even if no action is assigned to the setpoint. The alarm status register can be polled and cleared through communications.
(2) This action causes the alarm LED on the front panel to blink that gives the user a local alarm indication. The alarm LED operates in latched mode, i.e., even if an alarm condition disappears, the alarm LED is still blinking until the user acknowledges the alarm from the front panel (see Section 5.1). An alarm LED can be operated from any number of setpoints using an OR scheme.
(3) Alarm relays operate in unlatched mode. This means that a relay is operated while an alarm condition is present and is automatically released when an alarm condition disappears. Each relay can be operated from any number of setpoints using an OR scheme, i.e., a relay will be in operate state while either of the alarm conditions is still present.
(4) This action converts a common event counter to the time counter which measures time at 0.1 hour resolution while the setpoint is in the operated state. Each time counter has a non-volatile shadow counter that counts time at 1-second resolution before the corresponding time counter is incremented. The time counters can be inspected via the Status Information Menu. They are labeled by an hour mark in the middle window.

4.7 Relay Operation Control Menu

SELECT \rightarrow CHG \rightarrow ENTER $\uparrow \downarrow \rightarrow$ rELo \rightarrow ENTER
This menu allows you to set the relay operation mode: non-failsafe or failsafe. Failsafe relay operation is the opposite of normal operation where relay contacts are closed when a relay is operated (activated), and are open when a relay is released (de-activated). In failsafe mode, an alarm is activated by a nonenergized relay which will open in all cases when an alarm condition is present or an alarm setpoint is not operational either due to a loss of control power or due to corruption of the setpoint setup configuration. A failsafe relay is closed only if it is under setpoint control and no alarm conditions exist, or if it is manually operated via communications.

To select a relay:
\checkmark Press SELECT to activate the middle window, and then use the up/down arrow keys to scroll to the desired relay.
To change the relay operation mode:
\checkmark Press SELECT to activate the lower window.
\checkmark Use the up/down arrow keys to set the desired option. Select nor for normal (non-failsafe) relay operation, or select FSAFE for failsafe relay operation.
\checkmark Press ENTER to store your new setting or press ESC to leave your previous setting unchanged.

To quit the setup menu:

\checkmark From the middle window, press ESC or ENTER.

NOTES

1. You will not be able to change the relay operation mode if a relay has been allocated for pulsing.
2. When a failsafe relay is allocated for pulsing, it automatically reverts to normal operation.

4.8 Display Setup Menu

SELECT \rightarrow CHG \rightarrow ENTER $\uparrow \downarrow \rightarrow$ diSP \rightarrow ENTER
This menu allows you to view and change display properties. Table 4-9 lists available options with their code names and applicable ranges.

Table 4-9 Display Options (* default setting)

Display	Code	Pa ameter	Options	Descrip ion
$\begin{array}{\|l\|} \hline \hline \text { diSP } \\ \hline \hline \text { UPdt } \end{array}$ 0.5	UPdt	Display update time	$\begin{aligned} & 0.1-10.0 \mathrm{~s} \\ & (0.5)^{*} \end{aligned}$	Defines interval between display updates
$\begin{aligned} & \hline \text { diSP } \\ & \hline \text { ScrL } \end{aligned}$	ScrL	Auto scroll	$\begin{aligned} & \text { nonE* } \\ & 2-15 \mathrm{~s} \end{aligned}$	Disables/enables auto scroll on common measurements display (main screen) and defines scroll interval
$\begin{array}{\|l\|l\|} \hline \text { diSP 图 } \\ \hline \hline \text { rEtn } \end{array}$	rEtn	Auto return to the main screen	diS** En	Disables/enables auto return to the main screen after 30 seconds of uninterrupted use
diSP bAr 5000	$b A r$	Nominal load current for LED bar graph	$\begin{aligned} & 0-6,500 A \\ & (0 *) \end{aligned}$	Defines the nominal load (100\%) level for the bar graph display ($0=\mathrm{CT}$ primary current)
$\begin{array}{\|l} \hline \hline \text { diSP } \\ \hline \hline \text { Ph. } \boldsymbol{R} \\ \hline \hline \text { diS } \end{array}$	Ph.P	Phase powers display mode	diS** En	Disables/enables display of phase powers in common measurements (main screen)
$\begin{array}{\|l} \hline \text { diSP } \\ \hline \hline \text { Fund } \\ \hline \hline \text { dis } \end{array}$	Fund	Fundamental values display mode	diS** En	Disables/enables display of fundamental values in common measurements (main screen)

To select a display option:

\checkmark Press SELECT to activate the middle window, and then use the up/down arrow keys to scroll to the desired option.
To change the display option:
\checkmark Press SELECT to activate the lower window.
\checkmark Use the up/down arrow keys to set the desired option.
\checkmark Press ENTER to store your new setting or press ESC to leave your previous setting unchanged.

To quit the display setup menu:

\checkmark From the middle window, press ESC or ENTER.

4.9 User Selectable Options Menu

This menu allows you to change options which relate to the instrument features and functionality. Table 4-10 lists all available options with their code names and applicable ranges.

To select an option:

\checkmark Press SELECT to activate the middle window, and then use the up/down arrow keys to scroll to the desired option.
To change the selected option:
\checkmark Press SELECT to activate the lower window.
\checkmark Use the up/down arrow keys to set the desired value.
\checkmark Press ENTER to store your new setting or ESC to leave the previous setting unchanged.

To quit the display setup menu:

\checkmark From the middle window, press ESC or ENTER.

Table 4-10 User Selectable Options (* default setting)

Code	Parameter	Options	Description
P.cAL	Power calculation mode ©	$r E A c^{*}$ $n A c t$	Using reactive power Using non-active power
roLL	Energy roll value (2)	$10 . E 4$	$10,000 \mathrm{kWh}$
		$10 . E 5$	$100,000 \mathrm{kWh}$
		$10 . E 6$	$1,000,000 \mathrm{kWh}$
		$10 . E 7$	$10,000,000 \mathrm{kWh}$
		$10 . E 8^{*}$	$100,000,000 \mathrm{kWh}$
Ph.En	Phase energy diS*, En	Enables/disables measurements of	
	measurements		energies per phase

(1) Power calculation mode (P.cAL):

Mode 1: Reactive power calculation (rEAc)
Active power P and reactive power Q are measured directly and apparent power

$$
S=\sqrt{P^{2}+Q^{2}}
$$

Mode 2: Non-active power calculation (nAct)
Active power is measured directly, apparent power $\mathrm{S}=\mathrm{V} \times \mathrm{I}$ (where V, I - rms voltage and currents) and non-active power $N=\sqrt{ } S^{2}-P^{2}$
Mode 1 is recommended for electrical networks with low harmonic distortion (voltage THD $<5 \%$, current THD $<10 \%$); Mode 2 is recommended for all other cases.
(2) Energy roll value example: If roll value $=10 . E 4$, the energy counter contains 4 digits, i.e., energy is displayed up to 9.999 MWh (Mvarh, MVAh) with resolution 0.001 MWh .

Rollover Value	Maximum Energy kWh (kvarh, kVAh)	Maximum Display Reading MWh (Mvarh, MVAh)	Display Resolution MWh (Mvarh, MVAh)
10.E4	9,999	9.999	0.001
10.E5	99,999	99.999	0.001
10.E6	999,999	999.99	0.01
10.E7	$9,999,999$	$9,999.9$	0.1
10.E8	$99,999,999$	99,999	1

The roll value may be changed in accordance with the average load of the power line. For example, if average power is 400 kW and the counter must be reset every 3 months (2160 hours), then energy during this period equals 864000 kWh (6 digits) and the roll value $=10 . \mathrm{E}$.

4.10 Access Control Menu

This menu can be only accessed via the Setup Change Menu (CHG). It is used in order to:

- change the user password
- enable or disable password check

To view an option setting:

\checkmark Press SELECT to activate the middle window.
\checkmark Use the up/down arrow keys to scroll to the desired option (PASS or CtrL).

To change the password:
\checkmark Press SELECT to activate the lower window.
\checkmark Use the up/down arrow keys to modify the password. The password can be up to four digits long.
\checkmark Press ENTER to store your new password, or ESC to leave the password unchanged.
To enable/disable password checking:
\checkmark Press SELECT to activate the middle window, and then use the up/down arrow keys to move to the CtrL entry.
\checkmark Press SELECT to activate the lower window.
\checkmark Use the up/down arrow keys to change the password checking status: select OFF to disable password protection, or select On to enable password protection.
\checkmark Press SELECT to store your new option, or ESC to leave the option unchanged.
To quit the setup menu:
\checkmark From the middle window, press ESC or ENTER.
Store your password in a safe place. If you do not provide the correct password, you will need to contact your local distributor for the super-user password to override password protection.

4.11 Reset/Synchronization Menu

This menu allows you to reset to zero the accumulators and Min/Max registers in your instrument, and also to synchronize the power demand interval. The menu can be only accessed via the Setup Change Menu (CHG). If the reset is disabled from the Basic Setup Menu (see Section 4.1), you will not be able to enter this menu.

The following designations are used in the menu to specify a data location to be affected:

EnrG	Resets total accumulated energies
dnd	Resets all total maximum demands
P.dnd	Resets total power maximum demands
A.dnd	Resets volt/ampere maximum demands
Cnt	Resets all event/time counters
Cnt. 1	Resets counter \# 1
Cnt. 2	Resets counter \# 2
Cnt. 3	Resets counter \# 3
Cnt. 4	Resets counter \# 4
Lo.Hi	Resets Min/Max registers (does not affect maximum demands)
d.Snc	Provides synchronization of the power demand interval (see NOTES below)

$r S t$ 图
EnrG
do 园

To reset the desired locations:
\checkmark Press SELECT to activate the middle window, and then use the up/down arrow keys to scroll to the desired data location entry.
\checkmark Press SELECT to activate the lower window.
\checkmark Press and hold ENTER for about 5 seconds until the do label is replaced with done, and then release the key. You will return to the middle window.
\checkmark Press ESC to quit the menu.

NOTES:

1. If the CHG menu is not secured by a password, fast reset of the Min/Max registers, maximum demands and energies can be done from the data display mode (see Section 5.1) and counters from the Status Information Menu (see Section 6.1) without entering the reset menu.
2. If you select the d. Snc entry, take into consideration the following:

- Synchronization of the instrument's internal timer requires that the power demand period be specified in minutes (see Section 4.1, Basic Setup Options). If more than 30 seconds pass from the beginning of the current demand interval, the new demand interval starts immediately; otherwise synchronization is delayed until the next demand interval.
- Synchronization occurs exactly 5 seconds from the time you first pressed ENTER while you hold the key.

Chapter 5 Data Display

5.1 Navigating in the Display Mode

The front panel has a simple interface that allows you to display numerous measurement parameters in up to 45 display pages. For easier reading, the parameters are divided into three groups, each accessible by a designated key. These are:

- Common measurements
- Min/Max measurements
- Total Harmonic measurements
- Individual Harmonics measurements
- Energy measurements
- no selection key
- selected by the MAX/MIN key
- selected by the H/ESC key
- selected by the H/ESC key
- selected by the ENERGY key

The up/down arrow keys are used as follows in the Display Mode:

Scrolls through the pages downward (forward)
Scrolls through the pages upward (backward)
Returns to the first page within current measurement group
When pressed for 5 seconds, clears the alarm LED

The front panel display is updated approximately twice per second; you can adjust the display update rate via the Display Setup Menu (see Section 4.8). Table 5-1 lists all displayed parameters and their LED indicators.

Load Bar Graph

The load bar graph displays the amount, in percent, of the current load with respect to user-defined nominal load current. The highest current measured by the C191HM is divided by the nominal load current as defined in the Display Setup Menu (see Section 4.8) and expressed as a percent by the LEDs (40% to 110%) which are lit. For example, if all LEDs up to and including 90% are lit, this means that the load is 90% of the nominal load current. If the nominal load current is set to 0 , it is taken from the CT primary current setup.

Alarm LED

The blinking Alarm LED gives you an alarm indication. It is controlled by the alarm/event setpoints (see Section 4.6) and operates in latched mode. Even if alarm conditions are no longer present, the alarm LED will continue to blink. To clear the alarm LED, press the up/down arrow keys simultaneously for 5 seconds.

Auto Scroll

If display Auto Scroll option is enabled (see Section 4.8), the common measurements display (main screen) will scroll automatically after 30 seconds of uninterrupted use.
\checkmark To stop auto scrolling at the current page, press either arrow key.

Auto Return to the Main Screen

If display Auto Return option is enabled (see Section 4.8), the display will automatically return to the main screen from any other measurement screen after 30 seconds of uninterrupted use.

Fast Reset of Accumulated Data

When changing data via the front panel is not secured by a password, you can reset the Min/Max registers, maximum demands and energies from the display mode without entering the reset menu.

NOTES

1. The common measurements display does not have a designated indicator LED. If no indicator LED is lit up below the display, this means that the common measurement parameters are being displayed at this time. To return to the common measurements from another group, press the illuminated key until it goes out.
2. When you move to another measurement group, the instrument stores your last location; when you return to the previous group, the instrument restores the last page. At power up, the instrument always returns to the common measurements group and shows you the last page that was displayed prior to loss of power.

Selecting a Display Page

\checkmark Press the down/up arrow keys to scroll through display pages.

Selecting Common Measurements

\checkmark Press the key pointed to by the illuminated round LED below the front panel display. If no LED is lit up, this means that the front panel displays the
common measurements parameters.

Selecting Min/Max Measurements

\checkmark Press the MAX/MIN key. Use the up/down arrow keys to scroll through Min/Max measurements.

Selecting Total Harmonic Measurements

\checkmark Press the H/ESC key until the THD/TDD LED is illuminated. Use the up/down arrow keys to scroll through the different harmonic parameters.

Selecting Individual Voltage Harmonics Measurements

\checkmark Press the H/ESC key until the HARMONICS LED is illuminated and volts LEDs at the right are lit. Use the up/down arrow keys to scroll through the different harmonics readings.

Selecting Individual Current Harmonics Measurements

\checkmark Press the H/ESC key until the HARMONICS LED is illuminated and amps LEDs at the right are lit. Use the up/down arrow keys to scroll through the different harmonics readings.

Selecting Energy Measurements

\checkmark Press the ENERGY key. Use the up/down arrow keys to scroll through the different energy readings.

Fast Reset of Accumulated Data

\checkmark Select a display page where the data you want to reset is displayed. To reset:

- Min/Max log registers: select a Min/Max page from the Min/Max measurements display (where a MAX or MIN round LED is illuminated).
- Ampere and volt maximum demands: select the ampere or volt maximum demand page from the Min/Max measurements display (where a MAX DMD LED is illuminated, and volts or amps LEDs at the right are lit).
- Power maximum demands: select the power maximum demand page from the Min/Max measurements display (where a MAX DMD LED is illuminated, and kVA/MVA and kW/MW LEDs at the right are lit).
- Total and phase energies: select the energy measurements display.
\checkmark While holding the SELECT key, press and hold ENTER for about 5 seconds. The displayed data is reset to zero.

5.2 Data Display Formats

Table 5-1 specifies all front panel local displays available in the display mode. The display windows are labeled in the table as follows: 1 = upper window, $2=$ middle window, 3 = lower window.
Table 5-1 Displayed Parameters

Page	Window	Indicator LED	Parameter (1)	Digits	Unit ${ }^{2}$
			Common Measurements		
1	1	V1/V1-2	Voltage L12	4	V/kV
1	2	V2/V2-3	Voltage L23	4	V/kV
1	3	V3/V3-1	L. Voltage L31	4	V/kV
2	1	V1/V1-2	Voltage L1 ${ }^{(7)}$	4	V/kV
2	2	V2/V2-3	Voltage L2 (7)	4	V/kV
2	3	V3/V3-1	P. Voltage L3 7	4	V/kV
3	1	A1	Current L1	4	A
3	2	A2	Current L2	4	A
3	3	A3	Current L3	4	A
4	1	kVA	Total kVA	4	kVA/MVA
4	2	PF	Total power factor	4	
4	3	kW	Total kW	4	kW/MW
5	1	A NEUT	Neutral current	4	A
5	2	Hz	Frequency	4	Hz
5	3	kvar	Total kvar	4	kvar/Mvar
6	1		Ph.L1 (4)		Label
6	2	PF	Power factor L1	4	
6	3	kW	kW L1	4	kW/MW
7	1	kVA	kVA L1	4	kVA/MVA
7	2		Ph.L1 (4)		Label
7	3	kvar	kvar L1	4	kvar/Mvar
8	1		Ph.L2 (4)		Label
8	2	PF	Power factor L2	4	
8	3	kW	kW L2	4	kW/MW
9	1	kVA	kVA L2	4	kVA/MVA
9	2		Ph.L2 (4)		Label
9	3	kvar	kvar L2	4	kvar/Mvar
10	1		Ph.L3 (4)		Label
10	2	PF	Power factor L3 4		
10	3	kW	kW L3	4	kW/MW
11	1	kVA	kVA L3	4	kVA/MVA
11	2		Ph.L3 (4)		Label
11	3	kvar	kvar L3	4	kvar/Mvar
12	1		H01 (Fundamental harmonic)		Label
12	2	PF	H01 total power factor	4	
12	3	kW	H01 total kW	4	kW/MW
13	1		H1.L1 (4)		Label
13	2	PF	H01 power factor L1	4	
13	3	kW	H01 kW L1	4	kW/MW

Page	Window	Indicator LED	Parameter (1)	Digits	Unit (2)
5	1	Mvarh	rE.En.		Label
5	2		EP. Mvarh export		Label
5	3			5	Mvarh
			Phase Energ es (5)		
6	1	MWh	Ac.En.		Label
6	2		IP.L1		Label
6	3		MWh import L1	5	MWh
7	1	Mvarh			Label
7	2		rE.En.		Label
7	3		Mvarh import L1	5	Mvarh
8	1	MVAh	AP.En.		Label
8	2		L1		Label
8	3		MVAh L1	5	MVAh
9	1	MWh	Ac.En.		Label
9	2		IP.L2		Label
9	3		MWh import L2	5	MWh
10	1	Mvarh	rE.En.		Label
10	2		IP.L2		Label
10	3		Mvarh import L2	5	Mvarh
11	1	MVAh	AP.En.		Label
11	2		AP.En.		Label
11	3		MVAh L2	5	MVAh
12	1	MWh	Ac.En.		Label
12	2		IP.L3		Label
12	3		MWh import L3	5	MWh
13	1	Mvarh	rE.En.		Label
13	2		IP.L3		Label
13	3		Mvarh import L3	5	Mvarh
14	1	MVAh	AP.En.		Label
14	2		L3		Label
14	3		MVAh L3	5	MVAh

(1) Display readings for all electrical quantities except Min/Max log and energies are sliding average values.
(2) When using direct wiring (PT Ratio $=1$), voltages are displayed in 0.1 V units, currents in 0.01 A units, and powers in $0.001 \mathrm{~kW} / \mathrm{kvar} / \mathrm{kVA}$ units. For wiring via PTs (PT Ratio > 1), voltages are displayed in 1 V units, currents in 0.01 A units, and powers in 0.001 MW/Mvar/MVA units. When the value width is over the window resolution, the right most digits are truncated
(3) By default, the maximum range for energy readings is $99,999,999 \mathrm{MWh} / \mathrm{Mvarh} / \mathrm{MVAh}$. Beyond this value, the reading will roll over to zero. When the energy reading exceeds the window resolution, the right-most digits are truncated. To avoid truncation, you can change the energy roll value to lower limit via the User Selectable Options menu (see Section 4.9). Negative (exported) energy readings are displayed without a sign.
(4) Per phase power and power factor readings are displayed only in 4LN3/4LL3 and 3LN3/3LL3 wiring modes (see Section 4.1) if the phase powers display is enabled in the Display Setup menu (see Section 4.8).
(5) Phase energy readings are displayed only in 4LN3/4LL3 and 3LN3/3LL3 wiring modes if they are enabled in the User Selectable Options menu (see Section 4.9).
(6) When the 4LN3 or 3LN3 wiring mode is selected, the voltages will be line-to-neutral; for any other wiring mode, they will be line-to-line voltages.
(7) Displayed only in the 4LN3 or 3LN3 wiring mode.

5.3 Self-Test Diagnostics Display

The C191HM periodically performs self-test diagnostics during operation. If the instrument fails the test, it discards the last measurement results, and an error code is displayed for one second on all LEDs. Error codes are listed in Table 5-2. Code '8' indicates normal operation.

Frequent failures may be the result of excessive electrical noise in the region of the instrument. If the instrument continuously resets itself, contact your local distributor.

Table 5-2 Self-Test Diagnostic Codes

Code	Meaning
1	ROM error
2	RAM error
3	Watch dog timer reset
4	Sampling failure
5	Out of control trap
7	Timing failure
8	Normal power up
9	External reset (warm restart)

NOTE

The C 191 HM provides a self-check alarm register accessible through communications that indicates possible problems with instrument hardware or setup configuration. The hardware problems are indicated by the appropriate bits which are set whenever the instrument fails self-test diagnostics or in the event of loss of power. The setup configuration problems are indicated by the dedicated bit which is set when either configuration register is corrupted. In this event, your instrument will use the default configuration. For more information on the self-check alarm register, refer to the communications reference guides shipped with your instrument.

Chapter 6 Viewing Status Information

Through the Status Information Menu (StA), it is possible to view the status of various instrument features.

6.1 The Status Information Menu

SELECT \rightarrow StA \rightarrow ENTER

To enter the Status Information Menu:
\checkmark From the display mode, press SELECT to enter the Primary Selection Menu.
\checkmark Press SELECT to activate the StA window.
\checkmark Press ENTER.
To select a display page:
\checkmark Press the up/down arrow keys to scroll through the display pages.
To quit the menu and return to the display mode:
\checkmark Press ESC or ENTER.

Front Panel Display

When you are in the Status Information Menu, the front panel display is updated approximately four times per second and shows you a wide variety of status information that you can review by scrolling through display pages.

The status parameters are designated by the abbreviated labels in the upper and/or middle window. The upper window flashes, indicating that you are in the menu display.

Fast Reset of Counters

When changing data via the front panel is not secured by a password, you can reset the counters from the Status Information Menu display without entering the reset menu:
\checkmark Select a display page where the counter you want to reset is displayed.
\checkmark While holding the SELECT key, press and hold ENTER for about 5 seconds. The displayed data is reset to zero.

6.2 Status Display Formats

Table 6-1 lists all the displays available from the Status Information Menu. The display windows are labeled in the table as follows: $1=$ upper window, $2=$ middle window, 3 = lower window.

Table 6-1 Status Information Display

Page	Window	Parameter	Digits	Unit	
1	1	PHAS		Label	
1	2	rOt			
1	3	Phase rotation sequence (POS/NEG/ERR)			
2	1	rEL		Label	
2	2	Relay \#1 - \#4 status	4		
2	3	Relay \#5-\#8 status	4		
3	1	St.In		Label	
3	3	Status input			
4	1	Cnt.1	5	Label	
4	3	Counter \#1		Label	
5	1	Cnt.2	5		
5	3	Counter \#2	5	Label	
6	1	Cnt.3		Label	
6	3	Counter \#3	5		
7	1	Cnt.4			
	3	Counter \#4			

Appendix: Technical Specifications

Input and Output Ratings

3 galvanically isolated voltage inputs	690 V: (standard)	DIRECT INPUT (690V line-to-line voltage and 400V line-to-neutral) Burden: <0.5 VA INPUT USING PT Burden: <0.15 VA
	120 V : (optional)	INPUT USING PT (120V line-to-line voltage) Burden: <0.1 VA
3 galvanically isolated current inputs	5 A: (standard)	INPUT VIA CT with 5A secondary output Burden: <0.1 VA Overload withstand: 10A RMS continuous, 250A RMS for 1 second
	1 A: (optional)	INPUT VIA CT with 1A secondary output Burden: <0.02 VA Overload withstand: 2A RMS continuous, 50A RMS for 1 second
Voltage and current input terminals		UL recognized Screws: Brass, M4 Maximum wire section: $2.5 \mathrm{~mm}^{2}$ (12 AWG)
Optically isolated communication port		EIA RS-485 or RS-232 standard (factory set) Maximum wire section: $1.5 \mathrm{~mm}^{2}$ (14 AWG)
Relay outputs		5 relays rated at $5 \mathrm{~A}, 250 \mathrm{~V} \mathrm{AC} / 5 \mathrm{~A}, 30 \mathrm{VDC} /$ $0.5 \mathrm{~A}, 110 \mathrm{~V}$ DC 2 contacts (SPST Form A) 1 relay rated at $5 \mathrm{~A}, 250 \mathrm{VAC} / 5 \mathrm{~A}, 30 \mathrm{~V} \mathrm{DC} /$ $0.5 \mathrm{~A}, 110 \mathrm{~V}$ DC 3 contacts (SPDT Form C) 2 relays rated at $3 \mathrm{~A}, 250 \mathrm{~V} \mathrm{AC} \mathrm{/} \mathrm{3A}$,30 V DC / $0.5 \mathrm{~A}, 110 \mathrm{~V}$ DC 2 contacts (SPST Form A) Maximum wire section: $1.5 \mathrm{~mm}^{2}$ (16 AWG)
Analog output (optional)$\begin{aligned} & 4-20 \mathrm{~mA} \\ & 0-20 \mathrm{~mA} \\ & \hline \end{aligned}$		Accuracy 0.5%, Non-linearity 0.2% Load up to 510 Ohm 24V DC external power supply required
Status input		Dry contact for external synchronization or monitoring

Display	3 windows high-brightness seven-segment digit LEDs 3 color LED bar graph 40-110\%

Power Supply
Galvanically isolated power supply (factory set) 120\&230V AC / 120\&220 V DC
12 V DC
24 V DC
48 V DC
85-265V AC 50/60 Hz and 88-290V DC 10 W

Environmental Conditions	
Operating temperature	$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.+140^{\circ} \mathrm{F}\right)$
Storage temperature	$-25^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}\left(-13^{\circ} \mathrm{F}\right.$ to $\left.+176^{\circ} \mathrm{F}\right)$
Humidity	0 to 95% non-condensing

Construction

Instrument body Case enclosure: flame resistant ABS \& Polycarbonate Blend Dimensions: $144 \times 144 \times 86 \mathrm{~mm}(5.67 \times 5.67 \times 3.39$ ") Mounting: $136 \times 136 \mathrm{~mm}$ square cut-out (DIN 43700)
Instrument weight 0.9 kg (2.04 lb.)

```
Standards Compliance
    UL File # E129258 Pending
    CE:
    EMC: 89/336/EEC as amended by 92/31/EEC and 93/68/EEC
    LVD: 72/23/EEC as amended by 93/68/EEC and 93/465/EEC
        Harmonized standards to which conformity is declared:
        EN55011:1991; EN50082-1:1992; EN61010-1:1993; A2/1995
    Installation Category II, Pollution Degree 2
    EN50081-2:1994 EMC Generic Emission Standard - Industrial Environment
    EN50082-2:1995 EMC Generic Immunity Standard - Industrial Environment
    EN55022: 1994 Class A
    EN61000-4-2: 1995 Electrostatic Discharge
    EN61000-4-4: 1995 Electrical Fast Transient
    EN61000-4-8: 1993 Power Frequency Magnetic Field
    ENV50140:1993 Radio Frequency Electromagnetic Field, Amplitude Modulated
    ENV50204: 1995 (200Hz) Radio Frequency Electromagnetic Field, Pulse
                        Modulated
    ENV50141: 1993 Radio Frequency Common Mode, Amplitude Modulated
    ANSI C37.90.1: 1989 Surge Withstand Capability
    ANSI IEEE C62.41-1991 Surge Voltages in Low-Voltage AC Power Circuits
```

Measurement Specifications

Parameter	Full scale	Accuracy, \%			Range	Display resolution (\%Rdg) (2)@ range
		Rdg	FS	Conditions		
Voltage	$120 \mathrm{~V} \times \mathrm{PT}$ For L-N reading $@ 120 \mathrm{~V}$ or and for $400 \mathrm{~V} \times \mathrm{PT}$ 3OP2/3OP3 $@ 690 \mathrm{~V}$ wiring modes		0.25	$\begin{aligned} & \hline 10 \% \text { to } 120 \% \\ & \text { FS } \end{aligned}$	0 to 999,000 V	Direct wiring (PT=1): $0.1 \mathrm{~V} @ 0.1 \mathrm{~V} \text { to } 999.9 \mathrm{~V}$ Wiring via PTs (PT>1):
	$208 \mathrm{~V} \times \mathrm{PT}$ For L-L reading $@ 120 \mathrm{~V}$ or except $690 \mathrm{~V} \times \mathrm{PT}$ $3 \mathrm{OP} 2 / 3 \mathrm{OP} 3$ $@ 690 \mathrm{~V}$ wiring modes					$\begin{array}{\|l} 0.001 \mathrm{kV} @ 0.001 \mathrm{kV} \text { to } 9.999 \mathrm{kV} \\ \leq 0.1 \% \text { @ } 10.00 \mathrm{kV} \text { to } 999.0 \mathrm{kV} \end{array}$ Starting voltage 1.5% FS
Line current	CT PRIMARY CURRENT		0.25	$\begin{aligned} & 2 \% \text { to } 120 \% \\ & \text { FS } \end{aligned}$	0 to 9999 A	$\begin{array}{\|l} 0.01 \mathrm{~A} @ 0.01 \mathrm{~A} \text { to } 99.99 \mathrm{~A} \\ \leq 0.1 \% @ 100.0 \mathrm{~A} \text { to } 9999 \mathrm{~A} \\ \text { Starting current } 0.5 \% \mathrm{FS} \\ \hline \end{array}$
Active power	$0.36 \times$ PT \times CT @ 120 V input $1.2 \times \mathrm{PT} \times \mathrm{CT}$ @ 690 V input		0.5	$\|\mathrm{PF}\| \geq 0.5$ (1)	$\begin{aligned} & -2,000,000 \mathrm{to} \\ & +2,000,000 \mathrm{~kW} \end{aligned}$	Direct wiring (PT=1): 0.001 kW @ 0.001kW to 9.999 kW Wiring via PTs (PT>1): 0.001 MW @ 0.001 MW to 9.999 MW $\leq 0.1 \%$ @ 10.00 MW to 2000 MW
Reactive power	$0.36 \times$ PT \times CT @ 120V input $1.2 \times \mathrm{PT} \times \mathrm{CT}$ @ 690 V input		0.5	$\|\mathrm{PF}\| \leq 0.9$ (1)	$\begin{aligned} & -2,000,000 \text { to } \\ & +2,000,000 \\ & \text { kvar } \end{aligned}$	Direct wiring ($\mathrm{PT}=1$): 0.001 kvar @ 0.001kvar to 9.999 kvar Wiring via PTs (PT>1): 0.001 Mvar @ 0.001Mvar to 9.999 Mvar $\leq 0.1 \%$ @ 10.00 Mvar to 2000Mvar
Apparent power	$0.36 \times \mathrm{PT} \times \mathrm{CT}$ @ 120 V input $1.2 \times \mathrm{PT} \times \mathrm{CT}$ @ 690 V input		0.5	$\|\mathrm{PF}\| \geq 0.5$ (1)	$\begin{array}{\|l\|} \hline 0 \text { to } \\ 2,000,000 \mathrm{kVA} \end{array}$	Direct wiring ($\mathrm{PT}=1$): 0.001 kVA @ 0.001 kVA to 9.999 kVA Wiring via PTs (PT>1): 0.001 MVA @ 0.001MVA to 9.999 MVA $\leq 0.1 \%$ @ 10.00 MVA to 2000 MVA
Power factor	1		1	$\begin{aligned} & \|\mathrm{PF}\| \geq 0.5, \\ & \mathrm{I} \geq 10 \% \text { FSI } \end{aligned}$	$\begin{array}{\|l\|} \hline-0.999 \text { to } \\ +1.000 \end{array}$	0.001

Parameter	Full scale	Accuracy, \%			Range	Display resolution (\%Rdg) (2)@ range
		Rdg	FS	Conditions		
Frequency		0.1			$\begin{aligned} & 45.00 \text { to } 65.00 \\ & \mathrm{~Hz} \\ & \hline \end{aligned}$	0.01 Hz
Neutral (unbalanced) current	CT PRIMARY CURRENT		0.5	$\begin{aligned} & 2 \% \text { to } 120 \% \\ & \text { FS } \end{aligned}$	0 to 9999 A	$\begin{aligned} & \hline 0.01 \mathrm{~A} @ 0.01 \mathrm{~A} \text { to } 99.99 \mathrm{~A} \\ & \leq 0.1 \% \text { @ } 100.0 \mathrm{~A} \text { to } 9999 \mathrm{~A} \\ & \text { Starting current } 0.5 \% \mathrm{FS} \\ & \hline \end{aligned}$
Ampere demand	same as for current					
KW demand (block \& sliding) sa						
KVA demand (block \& sliding)						
Total Harmonic Distortion THD U (I), \% $\mathrm{U}_{1}\left(\mathrm{I}_{1}\right)$	999.9	1.5	0.2	$\begin{aligned} & \geq 0.1 \% \text { FS, } \\ & \text { U(I) } \geq 10 \% \\ & \text { FSU (FSI) } \\ & \hline \end{aligned}$	0 to 999.9	0.1
Total Demand Distortion TDD (I), \%	100		1.5	$\begin{aligned} & \geq 1 \% \text { FS, } \\ & \mathrm{I} \geq 10 \% \text { FSI } \end{aligned}$	0 to 100	0.1
Individual harmonic distortion, \%	100	$0.4+0.3 \times$ harmonic order		(4)	0 to 100	0.01
Voltage harmonic angles	360°	$0.5^{\circ}+0.6^{\circ} \times$ harmonic order		(4)	-180° to 180°	N/A
Current harmonic angles	360°	$0.3^{\circ}+0.3^{\circ} \times$ harmonic order		${ }^{44}$	-180° to 180°	N/A
Active energy Import \& Export		according to power accuracy (3)			$\begin{aligned} & \hline 0 \text { to } 99,999 \\ & \text { MWh } \end{aligned}$	$1 \mathrm{kWh} @ 1$ to $99,999 \mathrm{kWh}$ $10 \mathrm{kWh} @ 100$ to 999.99 MWh $100 \mathrm{kWh} @ 1,000$ to $9,999.9 \mathrm{MWh}$ $1 \mathrm{MWh} @ 10,000$ to $99,999 \mathrm{MWh}$
Reactive energy Import \& Export		according to power accuracy (3)			$\begin{aligned} & \hline 0 \text { to } 99,999 \\ & \text { Mvarh } \end{aligned}$	1 kvarh @ 1 to 99,999 kvarh 10 kvarh @ 100 to 999.99 Mvarh 100 kvarh @ 1,000 to $9,999.9$ Mvarh 1 Mvarh @ 10,000 to 99,999 Mvarh

Parameter	Full scale	Accuracy, \%			Range	Display resolution (\%Rdg) (2) @ range			
		Rdg	FS	Conditions					
Apparent energy		according to power accuracy (3)			$\begin{array}{\|l} \hline 0 \text { to } 99,999 \\ \text { MVAh } \end{array}$	1 kVAh @ 1 to 99,999 kVAh 10 kVAh @ 100 to 999.99 MVAh 100 kVAh @ 1,000 to 9,999.9 MVAh 1MVAh @ 10,000 to 99,999 MVAh			
PT = external potential transformer ratio CT, CT Primary Current = primary current rating of external current transformer									
FSU = voltage full scale \quad FSI $=$ current full scale $\quad \mathrm{U}_{1}=$ voltage fundamental $\quad \mathrm{I}_{1}=$ current fundamental									
(1) @ 10% to 120% of voltage FS and 2% to 120% of current FS (2) Higher resolution is achievable via communications (3) Where the current is $>10 \%$ FS, the energy accuracy is better than 1.5% Rdg. (4) 80% to 120% of voltage FS and 10% to 100% of current FS									
Additional Notes									
1. Accuracy is expressed as \pm (percentage of reading + percentage of full scale) ± 1 digit. This does not include inaccuracies introduced by the user's potential and current transformers.									
2. Specifications assume: voltage and current wave forms with THD $\leq 5 \%$ for kvar, KVA and PF; reference operating temperature: $20-26^{\circ} \mathrm{C}$.									

Index

A
accuracy, 51
active energy, 3, 51
active power, $3,4,34,50$
alarms, 13
ampere demand, 20, 29, 42
analog output, 2, 5, 8, 14, 23, 24
analog outputs, 20
B
basic setup, 19
burden, 48

C

communications, 51
CT, 1, 2, 9, 20, 24, 32, 39, 48, 50, 51
CT PRIMARY CURRENT, 20, 50, 51
current inputs, 8,48
current transformers, 51
D
demand, 2, 3, 14, 20, 22, 24, 29, 37, 40, 42, 43, 51
demand period, 14, 20, 37
display, 1, 26, 27, 31, 32, 33, 34, 37, 38, 39, 40, 41, 44, 46
display mode, 32, 37, 39, 41, 46

E

energy, 1, 2, 3, 13, 25, 34, 35, 40, 44, 45, 51 external synchronization, 2, 14, 20, 22, 48

F
frequency, 1, 2, 3, 4, 20, 28, 29, 42, 50
I
inputs, 22, 48
L
Load bar graph, 39
M
measurement, 51
menu, 17, 19, 21, 22, 23, 25, 26, 27, 31, 32, $33,34,36,37,44,45,46$
Modbus, ii, 16, 20, 21
mounting, 1, 7
open delta, 9,20
options, 14
overload withstand, 48

0

P

panel cut-out, 7
password, 2, 17, 36, 37, 39, 46
PComTest, 19
power, i, 2, 3, 4, 8, 14, 20, 22, 23, 31, 34,
$35,37,39,40,41,42,44,45,48,50,51$
power demand, 2, 3, 14, 20, 22, 37
power factor, 50
power source, i, 8
power supply, 48
PT, 9, 20, 24, 25, 44, 48, 50, 51
PT RATIO, 20
pulsing, 2, 13, 25, 26, 27, 31

R

reactive energy, 3, 51
reactive power, $3,4,34,50$
relays, $2,13,25,30,48$
reset, $20,35,37,39,40,45,46$
S
self tests, 45
setpoints, $20,26,27,30,39$
setup menus, 17, 19
setup mode, 17
sliding demand, 3
standards, 48, 49
status, 1, 2, 14, 17, 22, 30, 36, 46, 47
T
technical specifications, 48
terminals, ii, 8, 9, 48
V
voltage inputs, 48
wiring configuration, 5, 9
Wye, 20

